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The use of hydrogen plasmas in the microelectronics industry and other technical processes makes 
their understanding of significant interest. As a molecular gas, one of the key parameters to control 
in hydrogen plasmas is the spatial distribution of reactive H atoms within the discharge. As both the 
ground state H atom excitation and H2 dissociation are induced by hot electron impact, optical 
emission may be a route to better understanding the spatial profile of H atom production. In this 
study we use two-photon absorption laser induced fluorescence (TALIF) to measure axially resolved 
H atom densities and lifetimes in a capacitively couple plasma (CCP) at 30, 60, and 125 Pa. We also 
use phase resolved optical emission spectroscopy (PROES) to determine the electron heating 
mechanisms as well as the axially resolved optical emission profiles at the same pressures. The 
results show that H atom density increases with increased pressure and applied voltage. In each case 
it approaches a single maximum close to the bottom electrode despite the shorter H atom lifetimes 
in this region due to surface recombination, showing that the H atom production profiles dominate 
that of the loss profiles. Consistent with literature, the optical emission also increases close to the 
bottom electrode but shows a two peak structure corresponding to the field reversal and sheath 
expansion heating mechanisms. At higher pressures, the sheath edge is seen to move closer to the 
bottom electrode and the optical emission from the sheath expansion heating reduces relative to 
that of the field reversal heating. 
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